Design and Performance of a High Brightness Pulsed Power Electron Source

John Smedley, Triveni Srinivasan-Rao, Thomas Tsang, Ilan Ben-Zvi BNL

> J. Paul Farrel, Ken Batchelor Brookhaven Technology Group

Overview

- **Motivation**
- **ର Design**
 - What is a Pulsed Gun and Why is it Interesting?
 - Scaling Laws (Emittance, Current & Brightness)
 - Simulation Results of Beam Characteristics
 - Production of the HV pulse and synchronization
 - High voltage pulse generator
 - Laser Triggering
- **Performance**
 - Characterize Dark Current and Breakdown Threshold
 - Photoemission Measurements
 - Measurement of Beam Energy
 - Emittance & Energy Spread (Future Plans)

What is Brightness?

- Beam Brightness: The number of electrons per unit volume of phase space
- *2* Techniques to increase brightness
 - Increase Beam Charge
 - Reduce Pulse Duration
 - Decrease Emittance
- **Applications of High Brightness Electron Beams**
 - High Brightness (short pulse duration) X-Ray Sources
 - Free Electron Lasers

RF Photo-Injector

UV Laser extracts electrons from a cathode inside an RF cavity Electrons are accelerated by RF Field

Typical frequency range is 144 MHz to 17 GHz

Maximum field ~200 MV/m Bunch Charge 1 - 5 nC Pulse Duration 1 - 20 ps Emittance 1 - 5 π mm-mrad Maximum Brightness $4x10^{13}$ A/m²rad²

What is a Pulsed Gun?

- **Parallel plate electrodes**
- Short pulse allows gradients > 1 GV/m without breakdown
- ${\cal Q}$ HV pulse synchronized to the laser

Why is the Pulsed Gun Interesting?

- **Nuch Higher Gradients**
 - Pulsed Guns can obtain 1 GV/m and higher
 - For RF Guns, maximum field :

$$E_{0 \text{max}}[MV/m] = 8.47 + 1.57 \sqrt{f[MHz]}$$

- ${\it Q}$ Flat Temporal Distribution During Emission
- **⊘ Investigate Scaling Laws For:**
 - Emittance Correlation between a particle's transverse position and transverse momentum
 - Maximum Extractable Current
 - Brightness
- **Simulation**

Emittance

Emittance - Correlation between a particle's transverse position and transverse momentum

$$\boldsymbol{e} = \sqrt{\langle x^2 \rangle \langle p_x^2 \rangle - \langle x \cdot p_x \rangle^2}$$

- **Sources of Emittance**
 - Thermal: Randomly oriented initial energy

$$\mathbf{e}_T \propto \sqrt{(h\mathbf{n} - \mathbf{f}) + kT}$$

Space Charge:Self-Repulsion of electrons

$$e_{SC} \propto \frac{Q}{E_0(2\mathbf{s}_x + \mathbf{s}_z)}$$

RF:
Temporal and spatial variation of electric fields

$$\boldsymbol{e}_{RF} \propto E_0 f^2 \boldsymbol{s}_x^2 \boldsymbol{s}_z^2$$

 \boldsymbol{q} Total Emittance: $\boldsymbol{e}_{Tot} = \sqrt{\boldsymbol{e}_T^2 + \boldsymbol{e}_{SC}^2 + \boldsymbol{e}_{RF}^2}$

Scaling Laws

- **∂** Emittance
 - Space Charge Contribution Scales as $1/E_0$
 - RF effect dose not apply to Pulsed Gun
- **Maximum Current Density**
 - For very high current densities, the accelerating gradient can be canceled by the space charge field
 - Governed by Child's Law: $J \odot (E_0)^{3/2}$
- *a* Brightness
 - Brightness given by $B = \frac{2I}{{\boldsymbol e}_{tot}^2}$

Geometry for Simulation

- arOmega Used MAFIA and PBGUNS
- \mathfrak{A} 1 mm gap
- Ω 0.5 mm radius anode hole
- Ω 0.25 mm emitting spot
- **Ω Uniform current density**
- Ω 1 MV potential, 1 GV/m gradient

Simulation Results

- Ω Emittance as a function of current and pulse duration
- **1 Investigated effect of a 1 eV random initial energy**
 - Contributes 0.17 π mm-mrad to total emittance
- ${\it Q}$ Total beam emittance of 0.4 π mm-mrad for 100A, 10ps bunch
- **8. Brightness of 1.3x10¹⁵ A/m²rad²**
 - Compare to RF gun value of 4x10¹³ A/m²rad²
- **2 Longitudinal energy spread of 0.15% for 100A, 10ps bunch**
- Ω Maximum Current of 750 A -> Current Density of 3.8x10⁵ A/cm²

	PBGUNS			MAFIA	
CATHODE	BEAM	MAX	BEAM	MAX	
CURRENT	RADIUS	DIVERG.	RADIUS	DIVERG.	ϵ_{n}
Ampere	mm	mrad	mm	mrad	π mm-mrad
1	0.47	100	0.475	99	0.118
100	0.5	112	0.503	112	0.162
200	0.535	125	0.533	126	0.241
300	0.6	140	0.577	141	0.292
600	0.65	165	(+) 0.633	170	0.617
(*) 1000			(+) 0.707	173	2.16

1 MV Pulse Generator

Low Voltage System 500 nF Capacitors charged to 15 kV Triggered Spark Gap Resonant Transformer 1:80 Ratio Laser Triggered SF₆ **Spark Gap Transmission Line Sharpens Voltage Rise and Fall Tapered Line Transformer Vacuum Interface Adjustable Electrode Spacing**

Voltage Trace from MV pulser

1 ns duration, with 100 ps rise and fall Amplitude is 900 kV

1 MV Pulser System w/ Ti:Sapphire

Laser Triggering to Control Voltage Timing

Timing Jitter ~15 ns w/o Laser Trigger **KrF Excimer Laser used** to control spark gap **Best Jitter is ~0.5 ns 160 mJ of Laser Energy for 7 atm SF**₆ **90 mJ of Laser Energy** for 5:2 mix of SF₆ and Argon

Field Emission

- **Dark Current arises from electron tunneling**
- **Emission occurs at places of maximum field enhancement (tips,** inclusions)
- **Solution : Our Contract Density defined by Fowler-Nordheim Equation:**

$$J = \frac{1.54 \times 10^{-6} (\boldsymbol{b}_{FE} E)^{2}}{\boldsymbol{f}} \exp\left[\frac{-6.83 \times 10^{9} \boldsymbol{f}^{\frac{3}{2}}}{\boldsymbol{b}_{FE} E}\right]$$

Common to plot: $\frac{1}{E} vs \ln[\frac{I}{E^2}]$

$$\frac{1}{E}vs\ln[\frac{I}{E^2}]$$

- Slope determines β_{FE} if ϕ is known
- Ω Conditioning blasts off enhancement centers, reduces β_{FF}
- **Surface preparation technique is very important**

Fowler-Nordheim Plot for Cu Cathodes

Field Emission Results

- ${\it Q}$ Properly prepared cathodes can withstand fields in excess of 1 GV/m provided the pulse duration is ~ 1ns
- ${\it Q}$ The dark current after conditioning can be reduced to under 5 pC at 500 MV/m

Electron Energy Measurement

- **∂** Best fit range is ~1 mm
- **⊘ Corresponds to 715 keV**
- **⊘ Input energy was 650 keV**

Al Foil Penetration Energy Measurement

Photoemission w/ KrF

- $\it Q$ Laser Parameters 60 μJ in 23 ns pulse, 248 nm
- ϱ Corresponds to ~0.6 μJ during the voltage pulse
- **∂** Measured charge: 12 pC
- *Q* Quantum Efficiency: 10⁻⁴ at 500 MV/m
- *Q* Field Dependence of the QE
 - For small values of (hv- ϕ): $QE(m{n}) \propto (hm{n} m{f})^2$
 - Schottky Effect: $\mathbf{f} = \mathbf{f}_0 \sqrt{\frac{eE}{4\mathbf{p}\mathbf{e}_0}}$ -> $QE \propto \left(h\mathbf{n} \mathbf{f} + \sqrt{\frac{eE}{4\mathbf{p}\mathbf{e}_0}}\right)^2$
 - This implies that a plot of $(QE)^{1/2}$ vs $(Field)^{1/2}$ will be linear

Sqrt QE vs Sqrt Field, KrF

Photoemission with 250fs Ti:Sapphire

Cathode Laser

Ti: Sapphire 3rd Harmonic, 266 nm

Pulse duration after regenerative amplifier - 200-250fs

45 μ J on cathode

Measured Charge

60 pC measured charge

Quantum Efficiency = 6.2E-6

Emittance and Energy Spread [Future Plans]

- **A Solenoid Focusing Magnet and two Beam Position Monitors IBPM1 have been installed for measurement of emittance**
- ${\it Q}$ A Dipole Bending Magnet and a final BPM have been installed for measurement of energy and energy spread

Conclusion

- Operation of a pulsed power gun to field gradients exceeding 1 GV/m has been achieved w/o breakdown
- **Several cathode preparation techniques have been tested**
- **Synchronization to a trigger laser within 0.5 ns via laser triggering**
- Ω Photoemission has been achieved at fields up to 0.5 GV/m
- ${\it \Omega}$ The Schottky effect describes the field dependence of photoemission over a large field range (0.5 MV/m to 0.5 GV/m)
- ${\it Q}$ Simulations predict that a 100A, 10 ps beam with a full beam emittance of 0.4 π and an energy spread of 0.15%
- ${\it A}$ Hardware for measurement of emittance, energy and energy spread has been installed and is being tested

Photograph of 5 MV Pulser

Temporal Profile of Voltage Trace at the End of the Impedance Matched Transmission Line

Escape Probability

Criteria for escape:
$$\frac{\hbar^2 k_{\perp}^2}{2m} > E_T = E_f + \mathbf{f}$$

Requires electron trajectory to fall within a cone defined by angle:

$$\cos \boldsymbol{q} = \frac{k_{\perp \min}}{\left|\vec{k}\right|} = \left(\frac{E_T}{E}\right)^{\frac{1}{2}}$$

Fraction of electrons of energy E falling with the cone is given by:

$$D(E) = \frac{1}{4\boldsymbol{p}} \int_{0}^{\boldsymbol{q}} \sin \boldsymbol{q}' d\boldsymbol{q}' \int_{0}^{2\boldsymbol{p}} d\boldsymbol{j} = \frac{1}{2} (1 - \cos \boldsymbol{q})$$

For small values of $E-E_T$, this is the dominant factor in determining the emission. For these cases:

$$QE(\mathbf{n}) \propto \int_{\mathbf{f}+E_f}^{h\mathbf{n}+E_f} D(E)dE = \int_{E_T}^{(h\mathbf{n}-\mathbf{f})+E_T} D(E)dE$$

This gives:

$$QE(\mathbf{n}) \propto (h\mathbf{n} - \mathbf{f})^2$$